Учебные курсы кафедры — различия между версиями

Материал из Public ATP Wiki
Перейти к: навигация, поиск
(Примеры тем НИР прошлых лет)
(2019 год)
Строка 139: Строка 139:
 
# Исследование, разработка и реализация методов автоматической классификации поисковых запросов
 
# Исследование, разработка и реализация методов автоматической классификации поисковых запросов
 
# Составление гардеробов на основе примеров наборов одежды на человеке при помощи генеративно-состязательных сетей
 
# Составление гардеробов на основе примеров наборов одежды на человеке при помощи генеративно-состязательных сетей
 +
# Исследование характеристик потокового подхода к выкачке больших объемов данных
 +
# Сравнение методов трикластеризации в задаче извлечения информации
 +
# Предсказание триплексов рибонуклеотидов методами машинного обучения
 +
# Разработка программного обеспечения для анализа данных функциональной томографии и его применение в энцефалографии

Версия 12:41, 10 июня 2020

Учебные курсы кафедры Алгоритмов и технологий программирования

Весенний семестр 2020 года - основные дисциплины

1 курс 2 курс 3 курс 4 курс 5 курс 6 курс

Алгоритмы и структуры данных (поток ИВТ)

Хранение и обработка больших объемов данных

Технологии программирования и операционные системы - 2

Осенний семестр 2019 года - основные дисциплины

1 курс 2 курс 3 курс 4 курс 5 курс 6 курс

Формальные языки и трансляции

Параллельные и распределенные вычисления

Промышленное программирование на Java

Методы оптимизации

Full-stack разработка

Сложность вычислений

Математическая статистика

Технологии программирования и операционные системы

Машинное обучение на больших объемах данных

Осенний семестр 2018 года - основные дисциплины

1 курс 2 курс 3 курс 4 курс 5 курс 6 курс

Введение в программирование (базовый поток)

Введение в программирование (основной поток)

Архитектура компьютеров и операционные системы (ПМИ, набор 2017 года)

Алгоритмы и структуры данных (базовый поток)

Алгоритмы и структуры данных (основной поток)

Формальные языки и трансляции

Дополнительные главы Архитектуры компьютеров и операционных систем (ПМИ, набор 2016 года)

Параллельные и распределенные вычисления

Проектирование программных систем

Прикладное машинное обучение

Робастные методы в статистике

Теория решеток для анализа и разработки данных

Анализ изображений

Машинное обучение на больших объемах данных

Работа с данными в индустрии

Адаптационные курсы магистратуры 2018

Внимание! Эти дисциплины могут выбрать в качестве вариативных дисциплин только те магистранты, которые поступили в магистратуру ФИВТ не из МФТИ, или (по рекомендации научных руководителей) с других факультетов МФТИ.

Введение в программирование C++, часть 1 (осень, 9 семестр)

Введение в программирование C++, часть 2 (весна, 10 семестр)

Машинное обучение (весна, 10 семестр)

Технологии программирования и операционные системы (осень, 11 семестр)

Научно-исследовательская работа

Примеры тем НИР прошлых лет

2016 год

  1. Тестирование распределенных приложений в экосистеме Hadoop.
  2. Учет внешних данных при построении рекомендаций.
  3. Новая модель «атомов в соединении» и особенности химических свойств сверхтяжелых элементов.
  4. Оптимизация размещения объектов в памяти виртуальной машины Java.
  5. Разработка расширенного интерфейса пользователя к базе пространственных структур РНК.

2017 год

Добавить за этот и следующие.

2018 год

  1. Решение задачи нахождения особых точек лица на сделанных при помощи мобильного телефона фотографиях
  2. Разработка рекомендательной системы для подбора одежды
  3. Обучение человекоподобного агента в физическом симуляторе
  4. Исследование задачи трекинга лица для фотографий и видео, сделанных на мобильный телефон
  5. Классификация триплексов в структурах РНК
  6. Персонализированные рекомендательные системы в области индустрии моды

2019 год

  1. Анализ стоимостной модели распределённого SQL-запроса в СУБД Tarantool
  2. Аннотация и анализ третичных мотивов РНК типа A-кластер
  3. Исследование, разработка и реализация методов автоматической классификации поисковых запросов
  4. Составление гардеробов на основе примеров наборов одежды на человеке при помощи генеративно-состязательных сетей
  5. Исследование характеристик потокового подхода к выкачке больших объемов данных
  6. Сравнение методов трикластеризации в задаче извлечения информации
  7. Предсказание триплексов рибонуклеотидов методами машинного обучения
  8. Разработка программного обеспечения для анализа данных функциональной томографии и его применение в энцефалографии