Анализ изображений 2024
Факультетский курс. Параллельно читается в трех местах: МФТИ, ШАД, ВМК МГУ. Занятия проходят онлайн (Zoom) по средам с 18:00 до 19:20 (лекция) и с 19:30 до 20:50 (семинар). Первое занятие 11 сентября. Записи занятий будут доступны для просмотра. СодержаниеОбщие сведенияСеместр: 9 (пятый курс) Краткое описание Курс посвящен методам и алгоритмам компьютерного зрения, т.е. извлечения информации из изображений и видео. Для большинства задач будем обсуждать современные нейросетевые модели, сверточные и трансформеры. Курс в большей степени является практическим, а не теоретическим. Поэтому все лекции снабжены лабораторными и домашними работами, которые позволяют попробовать на практике большинство из рассматриваемых методов. Работы выполняются на языке Python, с использованием различных библиотек. Команда курсаЛектор: Влад Шахуро Важные ссылкиФорма регистрации: [] (заполните для доступа к чату курса и заданиям) Критерии оценки за курсОценка по курсу получается за выполнение следующих заданий:
Критерии оценки по 10-балльной шкале будут опубликованы в середине ноября. Приблизительные критерии (в процентах от макс. балла): Перезачет. Если вы уже проходили наш курс в другом месте (или будете проходить его параллельно в этом семестре), то вы можете перезачесть оценку за весь курс или часть заданий. Перезачет делается в индивидуальном порядке (пишите @ruroruro в телеграм). Перезачесть вместо наших заданий "похожие" задания из других курсов НЕЛЬЗЯ. Пересдача. Если до конца курса вы не набираете баллов на оценку «удовлетворительно», то вам нужно будет досдавать/пересдавать задания со штрафом как после дедлайна (60%) до тех пор, пока вы не наберете достаточно баллов. В крайнем случае назначается пересдача в формате итоговой контрольной на которой можно добрать недостающие баллы. План курсаПожалуйста, не выкладывайте содержание заданий и ваши решения в открытый доступ (Github и т.п.). Подготовка качественных заданий требует много времени и сил, которые таким образом обесцениваются. Заимствование кода из публичных источников без указания источника или плагиат могут штрафоваться. План курса предварительный, в процессе чтения может меняться. |
# | Дата | Лекция | Семинар | Домашнее задание |
---|---|---|---|---|
1 | 11.09.2023 | Цифровое изображение | Введение в практическую часть курса, Работа с numpy | Демозаикинг Прокудин-Горский |
2 | 18.09.2024 | Основы обработки изображений | Базовая обработка изображений | |
3 | 25.09.2024 | Сжатие изображений, Преобразование Фурье | Преобразование Фурье | Сжатие изображение (PCA, JPEG) Обратная свертка |
4 | 02.10.2024 | Классификация изображений. Введение в нейросети | Иерархия абстракций: numpy, pytorch, pytorch-lightning | Реализация нейросети на numpy |
5 | 09.10.2024 | Сверточные нейросетевые архитектуры | Нейросетевые задания курса, Базовое обучение нейросетей | Регрессия точек лица |
6 | 16.10.2024 | Трансформеры и сверточные нейронные сети с большими ядрами | Разбор устройства ViT, Приемы для дообучения нейросетей | Дообучение нейросети |
7 | 23.10.2024 | Поиск похожих изображений | Метрическое обучение, Эффективность тензорных вычислений | Классификация редких дорожных знаков |
8 | 30.10.2024 | Детекторы объектов | Детектирование объектов | Простой нейросетевой детектор |
9 | 06.11.2024 | Сегментация изображений | Простая нейросеть для сегментации | Сегментация изображений |
10 | 13.11.2024 | Основы обработки видео | Работа с видео | Трекинг объектов |
11 | 20.11.2024 | Self-supervised learning, foundation models | Self-supervised learning | |
12 | 27.11.2024 | Перенос стиля, superresolution, GAN, VAE (начало) | AE, VAE, GAN | GAN |
13 | 04.12.2024 | VAE (продолжение), Diffusion | Diffusion | |
14 | 11.12.2024 | Итоговая контрольная | Чтение статей, организация семинара, выбор аспирантуры | Квантование простой нейросети |
Рекомендуемая литература
|