CV 2023
Факультетский курс. Параллельно читается в трех местах: МФТИ, ШАД, ВМК МГУ. Занятия проходят онлайн (Zoom) по средам с 18:00 до 19:20 (лекция) и с 19:30 до 20:50 (семинар). Первое занятие 13 сентября. Записи занятий будут доступны для просмотра. СодержаниеОбщие сведенияСеместр: 9 (пятый курс) Краткое описание Курс посвящен методам и алгоритмам компьютерного зрения, т.е. извлечения информации из изображений и видео. Для большинства задач будем обсуждать современные нейросетевые модели, сверточные и трансформеры. Курс в большей степени является практическим, а не теоретическим. Поэтому все лекции снабжены лабораторными и домашними работами, которые позволяют попробовать на практике большинство из рассматриваемых методов. Работы выполняются на языке Python, с использованием различных библиотек. Команда курсаЛектор: Влад Шахуро Важные ссылкиФорма регистрации: ссылка (заполните для доступа к чату курса и заданиям) Критерии оценки за курсОценка по курсу получается за выполнение следующих заданий:
Критерии оценки по 10-балльной шкале будут опубликованы в середине ноября. Приблизительные критерии (в процентах от макс. балла): Перезачет. Если вы уже проходили наш курс в другом месте (или будете проходить его параллельно в этом семестре), то вы можете перезачесть оценку за весь курс или часть заданий. Перезачет делается в индивидуальном порядке (пишите @ruroruro в телеграм). Перезачесть вместо наших заданий "похожие" задания из других курсов НЕЛЬЗЯ. Пересдача. Если до конца курса вы не набираете баллов на оценку «удовлетворительно», то вам нужно будет досдавать/пересдавать задания со штрафом как после дедлайна (60%) до тех пор, пока вы не наберете достаточно баллов. В крайнем случае назначается пересдача в формате итоговой контрольной на которой можно добрать недостающие баллы. План курсаПожалуйста, не выкладывайте содержание заданий и ваши решения в открытый доступ (Github и т.п.). Подготовка качественных заданий требует много времени и сил, которые таким образом обесцениваются. Заимствование кода из публичных источников без указания источника или плагиат могут штрафоваться. План курса предварительный, в процессе чтения может меняться. |
# | Дата | Лекция | Семинар | Домашнее задание |
---|---|---|---|---|
1 | 13.09.2023 | Цифровое изображение | Введение в практическую часть курса, Работа с numpy | Демозаикинг Прокудин-Горский |
2 | 20.09.2023 | Основы обработки изображений | Базовая обработка изображений | |
3 | 27.09.2023 | Сжатие изображений, Преобразование Фурье | Преобразование Фурье | Сжатие изображение (PCA, JPEG) Обратная свертка |
4 | 04.10.2023 | Классификация изображений. Введение в нейросети | Иерархия абстракций: numpy, pytorch, pytorch-lightning | Реализация нейросети на numpy |
5 | 11.10.2023 | Сверточные нейросетевые архитектуры | Нейросетевые задания курса, Базовое обучение нейросетей | Регрессия точек лица |
6 | 18.10.2023 | Трансформеры и сверточные нейронные сети с большими ядрами | Разбор устройства ViT, Приемы для дообучения нейросетей | Дообучение нейросети |
7 | 25.10.2023 | Поиск похожих изображений | Метрическое обучение, Эффективность тензорных вычислений | Классификация редких дорожных знаков |
8 | 01.11.2023 | Детекторы объектов | Детектирование объектов | Простой нейросетевой детектор |
9 | 08.11.2023 | Сегментация изображений | Простая нейросеть для сегментации | Сегментация изображений |
10 | 15.11.2023 | Основы обработки видео | Работа с видео | Трекинг объектов |
11 | 22.11.2023 | Self-supervised learning, foundation models | Self-supervised learning | |
12 | 29.11.2023 | (пропуск из-за болезни лектора) | ||
13 | 06.12.2023 | Перенос стиля, superresolution, GAN, VAE (начало) | AE, VAE, GAN | GAN |
14 | 13.12.2023 | VAE (продолжение), Diffusion | Diffusion | |
15 | 20.12.2023 | Итоговая контрольная | Чтение статей, организация семинара, выбор аспирантуры | Квантование простой нейросети |
Рекомендуемая литература
|